Analyzing Relationships Between School Libraries and Academic Achievement

Keith Curry Lance Director Library Research Service Colorado State Library & University of Denver

Outline

- Background
- Research questions
- Data types & sources
- Statistical concepts & techniques
- "Success stories"

Background

- A half century of previous school library research
- The political climate of education & libraries in the late '80's
- The School Match Incident
- The first Colorado study
- The political climate of education & libraries in the late '90's
- The second Colorado study & successor studies by Lance, Rodney & Hamilton-Pennell
- Successor studies by others

Research Questions

- Are students more likely to "pass" tests if they have a school library than if they don't?
- Are students likely to score higher on tests if they have a school library than if they don't?
- As the school library improves, do test scores rise?

- How are different qualities of school libraries, schools, and communities related to each other?
- Do school libraries & test scores improve together, even when other school & community conditions are taken into account?

Types of Data

- Nominal
 - Categories
 - No necessary quantitative dimension
 - Pass/fail, library/no library
- Ordinal
 - Degrees of difference
 - No equal intervals
 - Zero is just a code
 - Usually limited number of values

- Interval/Ratio
 - Equal intervals
 - True zero (have none of something)
 - Usually large number of values
 - Weekly hours of librarian staffing, test scores

Types of Variables

- Dependent variable
 - "The effect" in a cause-and-effect relationship
 - Reading test scores used to "operationalize" concept of <u>academic</u> <u>achievement</u>

- Independent variables
 - "The causes" in a cause-and-effect relationship
 - Characteristics of school libraries, schools & communities
 - "Treatment" or predictor variables
 - "Control" variables

State Test Scores

- Standards-based tests v. "standardized" tests
- Test scores, % proficient & above v.
 % "passed" v. percentile rankings
- Reading scores are key
- Difference between existing & available data (actually acquiring data file in a usable format & on a timely schedule)

Other Data Sources

Data items	Source
Library	Survey
School library hours	
Staffing & staff activities	
Collections, technology & usage	
Expenditures	
School	State ED
 District expenditures per pupil 	dept.
 Teacher-pupil ratio 	
 Teacher education, experience & salaries 	
Community	State ED
•Students by NSLP status (poverty), race/ethnicity	dept.,
•Adult educational attainment	census

The Data Model

Experiment v. Statistical Analysis

Experiment

- Older studies
- Smaller samples
- More precise units of analysis (student)
- More control over independent variables
- Matching issues
- Easier to explain, communicate

Statistical analysis

- Newer studies
- Larger samples
- Less precise units of analysis (school)
- Less control over independent variables
- Data availability issues
- More precise measurement of effects

Statistical Significance

- Likelihood the sample results are representative of the universe under study
- Most common notation:

 $\blacksquare p < .05, < .01, < .001$

- Difference between statistical significance & confidence interval (i.e., margin of error)
- No statistical test of SUBSTANTIVE significance (i.e., how important is this?)

Statistical Analysis Software

Market leaders:

- SPSS: Statistical Package for the Social Sciences
- SAS: Statistical Analysis Software

Software Issues:

- Available statistical techniques: correlation, comparison of means, factor analysis, regression
- Data management features: sort, sample, compute, recode, if
- Case limits (maximum number of cases allowed)
- <u>Cost</u> (education discount)

Cross-tabulation

- Are students more likely to pass tests if they have a school library than if they don't?
- Two nominal variables or one nominal and one ordinal (small range)
- Pass/fail on tests, librarian/no librarian
- Turning interval or ratio variables into nominal or ordinal ones
- Chi-square (X²) indicates statistical significance

Test Scores by Time Spent Teaching Information Literacy: Alaska, 1998

Time on information literacy	Average & above scores	Below average scores	Total
Median &	56	12	68
above	82%	18%	100%
Below median	33	29	62
	53%	47%	100%
Total	89	41	130
	69%	31%	100%

Chi-square = 12.743, p < .001

Comparison of Means

- Are students likely to score higher on tests if they have a school library than if they don't?
- One nominal (2 dimensions), one interval or ratio variable
- Pass/fail on test, hours of librarian staffing
- Generates means (averages) for 2 groups
- Levene's test indicates equality (or inequality) of variances between groups
- t test indicates statistical significance of difference between groups

Student Visits for Information Literacy Instruction for Higher & Lower Scoring Elementary Schools: Alaska, 1998

Schools by reading scores	Student visits for IL instruction per 100 students		
High-achieving schools	81		
Low-achieving schools	43		

t = 3.963, p < .001

Correlation (r)

- As the school library improves, do test scores rise?
- Two interval or ratio variables
- LM expenditures per student, volumes per student
- Pearson's product-moment correlation (r)
- Expressed in decimal form
 - Perfect correlation = 1.00
 - + & indicate positive & negative relationships
 (+ = both rise or fall, = one rises, other falls)
 - r = .60-.80 v. .80+ & factor analysis
 - r square = percent of variation explained

Bivariate Correlation Coefficients for LM Program Development Variables: Colorado Middle Schools, 1999

LM Development variables	1	2	3	4	5	6
1. LMS hours/100	1.00					
2. Total hours/100	.696	1.00				
3. Volumes/student	.695	.703	1.00			
4. E-reference/100	.668	.779	.668	1.00		
5. Subscriptions/100	.701	.646	.680	.640	1.00	
6. LM exp. per student	.788	.790	.837	.755	.802	1.00

Factor Analysis

- How are different qualities of school libraries (schools, communities) related to each other?
- Analyzes relationships between and among variables
- Key statistics:
 - Percent of variance explained
 - Factor loadings
 - Factor scores
 - Allow mixing items on different scales
 - Data reduction technique

Factor Analysis of LM Program Development Variables: Colorado Middle Schools, 1999

LM Program	Factor
Development Variable	Loading
LMS hours/100 students	.863
Total hours/100 students	.877
Volumes per student	.874
E-reference/100	.863
Subscriptions/100	.847
LM exp. per student	.949

Initial eigenvalue = 4.638, 77% variance explained

Regression (R, R²)

- Do school libraries & test scores improve together, even when other conditions are taken into account?
- Need to conduct correlation—and often factor—analyses first
- Linear regression
- Stepwise regression
- Multiple R, R square & R square change
- Standardized beta coefficients (indicate positive or negative direction)
- Included v. excluded variables

Regression Analysis of 4th Grade Scores with LM, School, & Community Predictors: Colorado, 1999

Predictor		R	R Square	
added	R	Square	Change	Beta
% Poor	.638	.407	.407	471
LM Factor	.694	.482	.075	.238
% Minority	.709	.502	.021	225

p < .01

Excluded variables: teacher-pupil ratio, per pupil expenditures, teacher characteristics

"Success Stories"

Even the strongest statistical evidence can be made more persuasive by compelling "success stories"

Characteristics of Good "Success Stories"

- One clear point: value of librarian as teacher (technology coordinator, in-service provider)
- Variety of voices: librarians, students, teachers, principals, parents
- "Short & sweet"
- A quotable quote